Data Ingestion Portal

Wake up your data - set them free for Blue Society

Details of Neural network model output of marine phytoplankton primary production (Global Ocean)

Back

Dataset identification

Title of datasetNeural network model output of marine phytoplankton primary production (Global Ocean)
Narrative summary of datasetGlobal phytoplankton production monthly maps for 2017 are produced using an artificial neural network to perform a generalized nonlinear regression of PP on several predictive variables, including latitude, longitude, day length, MLD, SST, PBopt computed according to Behrenfeld and Falkowski (1997), PAR and CHL(0 m). More details about this model can be found in Scardi (2001). Behrenfeld, M. J., Falkowski, P. G. (1997), Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology & Oceanography, 42(1), 1–20. Scardi, M. (2001), Advances in neural network modeling of phytoplankton primary production, Ecological Modelling, 146, 33–45.
Summary of processing methodologyThe model uses an artificial neural network to perform a generalized nonlinear regression of PP on several predictive variables, including latitude, longitude, day length, MLD, SST, PBopt computed according to Behrenfeld and Falkowski (1997), PAR and CHL(0 m). More details about this model can be found in Scardi (2001). Several data sets were used to develop and validate the model. The largest one is still available at http://www.science.oregonstate.edu/ocean.productivity/field.data.c14.readme.php. Since field data were insufficient to calibrate the model in several regions, PP estimates from other models (VGPM, HYR, and the MOD-27 formulation (Esaias, 1996)) were considered as measurements where there were none. Therefore, this model can be regarded as a metamodel. As vertical profiles with very high (and possibly biased) P/B ratios were filtered out, the PP estimates obtained from this model tend to be slightly lower than those from several other models. Comparisons with other global models of phytoplankton primary production can be found in Carr et al. (2006), Friedrichs et al. (2009), Saba et al. (2010a, 2010b) and Lee et al. (2015). References Behrenfeld, M. J., Falkowski, P. G. (1997), Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology & Oceanography, 42(1), 1–20. Carr M.E., Friedrichs M.A.M., Schmeltz M., Maki Noguchi A., Antoine D., Arrigo K.R., Asanuma I., Aumont O., Barber R., Behrenfeld M., Bidigare R., Buitenhuis E.T., Campbell J., Ciotti A., Dierssen H., Dowell M., Dunne J., Esaias W., Gentili B., Gregg W., Groom S., Hoepffner N., Ishizaka J., Kameda T., Le Quéré C., Lohrenz S., Marra J., Mélin F., Moore K., Morel A., Reddy T.A., Ryan J., Scardi M., Smyth T., Turpie K., Tilstone G., Waters K. & Yamanaka Y., (2006). A comparison of global estimates of marine primary production from ocean color. Deep-Sea Research II, 53: 741–770. Friedrichs M.A.M., Carr M.-E., Barber R.T., Scardi M., Antoine D., Armstrong R.A:, Asanuma I., Behrenfeld M.J., Buitenhuis E.T., Chai F., Christian J.R., Ciotti A.M., Doney S.C., Dowell M., Dunne J., Gentili B., Gregg W., Hoepffner N., Ishizaka J., Kameda T., Lima I., Marra J., Mélin F., Moore J.K., Morel A., O’Malley R.T., O’Reilly J., Saba V.S., Schmeltz M., Smyth T.J., Tjiputra J., Waters K., Westberry T.K., Winguth A. (2009). Assessing the Uncertainties of Model Estimates of Primary Productivity in the Tropical Pacific Ocean. Journal of Marine Systems, 76: 113-133. Esaias, W. (1996). MODIS algorithm theoretical basis document for product MOD-27: ocean primary productivity. Available at http://modis.gsfc.nasa.gov/data/atbd/atbd-mod24.pdf. Lee Y.J., Matrai P.A., Friedrichs M.A., Saba V.S., Antoine D., Ardyna M., Asanuma I., Babin M., Bélanger S., Benoît-Gagné M., Devred E., Fernández-Méndez M., Gentili B., Hirawake T., Kang S.H., Kameda T., Katlein C., Lee S.H., Lee Z., Mélin F., Scardi M., Smyth T.J., Tang S., Turpie K.R., Waters K.J., Westberry T.K. (2015). An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models. Journal of Geophysical Research: Oceans, 120(9): 6508–6541. Saba, V. S., Friedrichs, M. A. M. , Carr, M.-E., Antoine, D., Armstrong, R. A., Asanuma, I., Aumont, O., Bates, N. R., Behrenfeld, M. J., Bennington, V., Bopp, L., Bruggeman, J., Buitenhuis, E. T., Church, M. J., Ciotti, A. M., Doney, S. C., Dowell, M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Karl, D. M., Lima, I., Lomas, M. W., Marra, J., McKinley, G. A., Mélin, F., Moore, J. K., Morel, A., Salihoglu, B., Scardi, M., Smyth, T. J., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K., Westberry, T. K., Yool, A. (2010a). Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT. Global Biogeochemical Cycles, 24, GB3020 Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Marra, J., Mélin, F., Morel, A., O'Reilly, J., Scardi, M., Smith Jr., W. O., Smyth, T. J., Tang, S., Uitz, J., Waters, K., Westberry, T. K. (2010b). An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences Discussions, 7: 6749-6788 Scardi, M. (2001), Advances in neural network modeling of phytoplankton primary production, Ecological Modelling, 146, 33–45. Model input Mixed layer data (MLD): NODC (Levitus) World Ocean Atlas 1994 monthly mixed layer climatology (180 x 360 pixels). First, MLD using temperature and density were averaged in each pixel. Then each value was replaced by the average value in its Moore neighborhood (excluding missing data coded as -1) and the resulting data were subsequently interpolated on the model output grid (4320x8640 pixels, equal to the MODIS 4 km global grid). Surface chlorophyll (CHL), Photosynthetically Available Radiation (PAR) and Sea Surface Temperature (SST): MODIS 4km monthly mapped (https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/4km), 4320x8640 pixels starting at longitude: 179.9791667°W , latitude 89.97916667 S, dx = 0.041666667°, dy = 0.041666667°
Supporting documentationData and model description file (Phyro_prod_model_data_readme.docx)
IDL code to read and visualize monthly maps (pp_scardi_read.pro)
monthly phytoplankton production map plot file (pp_2017.pdf)
Start date2017-01-01
End date2017-12-31

Responsible organisations

CountryItaly
Organisation nameUniversity of Rome Tor Vergata
Role of organisationOriginator of Dataset

Dataset availability

Original dataset download linkhttps://cloud.emodnet-ingestion.eu/index.php/s/879r5ByvTbb6VQ0
Dataset formatText or Plaintext
Public accessNo limitations
License for useODC-By
TypeDataset
Link to dataset after processing by data centrehttp://www.emodnet-biology.eu/
https://www.seadatanet.org/
Date of processed dataset publication2018-10-10

Locations

Map
Latitude north boundary89
Longitude east boundary180
Latitude south boundary-89
Longitude west boundary-180
Coordinate reference systemWorld Geodetic System 84
Sea areaWorld
Vertical extent unit4 Kilometres

Data types, collection and processing

Observation typeRate measurements (including production, excretion and grazing)
ParameterPrimary production in the water column
Data quality processing informationSeveral data sets were used to develop and validate the model. The largest one is still available at http://www.science.oregonstate.edu/ocean.productivity/field.data.c14.readme.php. Since field data were insufficient to calibrate the model in several regions, PP estimates from other models (VGPM, HYR, and the MOD-27 formulation (Esaias, 1996)) were considered as measurements where there were none. Therefore, this model can be regarded as a metamodel. As vertical profiles with very high (and possibly biased) P/B ratios were filtered out, the PP estimates obtained from this model tend to be slightly lower than those from several other models. Comparisons with other global models of phytoplankton primary production can be found in Carr et al. (2006), Friedrichs et al. (2009), Saba et al. (2010a, 2010b) and Lee et al. (2015). Carr M.E., Friedrichs M.A.M., Schmeltz M., Maki Noguchi A., Antoine D., Arrigo K.R., Asanuma I., Aumont O., Barber R., Behrenfeld M., Bidigare R., Buitenhuis E.T., Campbell J., Ciotti A., Dierssen H., Dowell M., Dunne J., Esaias W., Gentili B., Gregg W., Groom S., Hoepffner N., Ishizaka J., Kameda T., Le Quéré C., Lohrenz S., Marra J., Mélin F., Moore K., Morel A., Reddy T.A., Ryan J., Scardi M., Smyth T., Turpie K., Tilstone G., Waters K. & Yamanaka Y., (2006). A comparison of global estimates of marine primary production from ocean color. Deep-Sea Research II, 53: 741–770. Friedrichs M.A.M., Carr M.-E., Barber R.T., Scardi M., Antoine D., Armstrong R.A:, Asanuma I., Behrenfeld M.J., Buitenhuis E.T., Chai F., Christian J.R., Ciotti A.M., Doney S.C., Dowell M., Dunne J., Gentili B., Gregg W., Hoepffner N., Ishizaka J., Kameda T., Lima I., Marra J., Mélin F., Moore J.K., Morel A., O’Malley R.T., O’Reilly J., Saba V.S., Schmeltz M., Smyth T.J., Tjiputra J., Waters K., Westberry T.K., Winguth A. (2009). Assessing the Uncertainties of Model Estimates of Primary Productivity in the Tropical Pacific Ocean. Journal of Marine Systems, 76: 113-133. Esaias, W. (1996). MODIS algorithm theoretical basis document for product MOD-27: ocean primary productivity. Available at http://modis.gsfc.nasa.gov/data/atbd/atbd-mod24.pdf. Lee Y.J., Matrai P.A., Friedrichs M.A., Saba V.S., Antoine D., Ardyna M., Asanuma I., Babin M., Bélanger S., Benoît-Gagné M., Devred E., Fernández-Méndez M., Gentili B., Hirawake T., Kang S.H., Kameda T., Katlein C., Lee S.H., Lee Z., Mélin F., Scardi M., Smyth T.J., Tang S., Turpie K.R., Waters K.J., Westberry T.K. (2015). An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models. Journal of Geophysical Research: Oceans, 120(9): 6508–6541. Saba, V. S., Friedrichs, M. A. M. , Carr, M.-E., Antoine, D., Armstrong, R. A., Asanuma, I., Aumont, O., Bates, N. R., Behrenfeld, M. J., Bennington, V., Bopp, L., Bruggeman, J., Buitenhuis, E. T., Church, M. J., Ciotti, A. M., Doney, S. C., Dowell, M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Karl, D. M., Lima, I., Lomas, M. W., Marra, J., McKinley, G. A., Mélin, F., Moore, J. K., Morel, A., Salihoglu, B., Scardi, M., Smyth, T. J., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K., Westberry, T. K., Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Marra, J., Mélin, F., Morel, A., O'Reilly, J., Scardi, M., Smith Jr., W. O., Smyth, T. J., Tang, S., Uitz, J., Waters, K., Westberry, T. K. (2010b). An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences Discussions, 7: 6749-6788

Process information

Submitting organisationCNR, Institute of Atmospheric Sciences and Climate (ISAC) (Rome)
Submission identifier (UUID)65cf1057-2785-46bb-85c1-51752047b791
Date of dataset creation2018-01-29
Date of dataset revision2018-02-12
Date of metadata creation2018-02-02
Date of metadata latest revision2018-05-03
Date of publishing2018-05-09
Processing data centreOGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Division of Oceanography
Summary record-ID150